
Constructive heuristics

Celso C. Ribeiro (celso@ic.uff.br)

University of Vienna

Metaheuristics – 2017-10-18

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 1 / 18



Overview of talk

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 2 / 18

Solution construction

◮ Greedy algorithms
◮ Adaptive greedy algorithms
◮ Semi-greedy algorithms
◮ Random multistart
◮ Semi-greedy multistart
◮ Semi-greedy construction

Concluding remarks



Solution construction – Greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 3 / 18

Feasible solution S of a combinatorial optimization problem is subset of ground set E = {1, . . . , n}.

Since certain subsets of ground set elements cause infeasibilities, then a feasible solution cannot
contain any such subset.



Solution construction – Greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 3 / 18

Feasible solution S of a combinatorial optimization problem is subset of ground set E = {1, . . . , n}.

Since certain subsets of ground set elements cause infeasibilities, then a feasible solution cannot
contain any such subset.

If ci is the contribution of ground set element i ∈ E to the objective function, we assume that
f (S) =

∑
i∈S ci .

We build a solution incrementally from scratch.

◮ At each step, a single ground set element is added to the partial solution under construction.



Solution construction – Greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 3 / 18

Feasible solution S of a combinatorial optimization problem is subset of ground set E = {1, . . . , n}.

Since certain subsets of ground set elements cause infeasibilities, then a feasible solution cannot
contain any such subset.

If ci is the contribution of ground set element i ∈ E to the objective function, we assume that
f (S) =

∑
i∈S ci .

We build a solution incrementally from scratch.

◮ At each step, a single ground set element is added to the partial solution under construction.
◮ A ground set element to be added at each step cannot be such that its combination with one or more

previously added elements leads to an infeasibility.
◮ We call such an element feasible and denote by F the set of all feasible elements at the time a given

step is performed.



Solution construction – Greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 3 / 18

Feasible solution S of a combinatorial optimization problem is subset of ground set E = {1, . . . , n}.

Since certain subsets of ground set elements cause infeasibilities, then a feasible solution cannot
contain any such subset.

If ci is the contribution of ground set element i ∈ E to the objective function, we assume that
f (S) =

∑
i∈S ci .

We build a solution incrementally from scratch.

◮ At each step, a single ground set element is added to the partial solution under construction.

◮ We call such an element feasible and denote by F the set of all feasible elements at the time a given
step is performed.

Since the set of candidate elements F may contain more than one element, an algorithm designed to
build a feasible solution for some problem must have a mechanism to select the next feasible ground
set element from F to be added to the partially built solution under construction.

◮ From among all yet unselected feasible elements, a greedy algorithm chooses one of least cost.



Solution construction – Greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 4 / 18

The pseudo-code shows a greedy
algorithm for a minimization problem.

begin GREEDY;
1 S ← ∅;
2 f (S)← 0;
3 F ← {i ∈ E : S ∪ {i} is not infeasible};
4 while F 6= ∅ do

5 i∗ ← argmin{ci : i ∈ F};
6 S ← S ∪ {i∗};
7 f (S)← f (S) + ci∗ ;
8 F ← {i ∈ F \ {i∗} : S ∪ {i} is not infeasible};
9 end-while;
10 return S , f (S);
end GREEDY.



Solution construction – Greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 4 / 18

The pseudo-code shows a greedy
algorithm for a minimization problem.

Feasible solution S is constructed, one
ground set element at a time.

F is set of feasible ground set elements.

Greedy algorithm selects feasible ground
set element of smallest cost.

Note that costs can be sorted in a
preprocessing step.

begin GREEDY;
1 S ← ∅;
2 f (S)← 0;
3 F ← {i ∈ E : S ∪ {i} is not infeasible};
4 while F 6= ∅ do

5 i∗ ← argmin{ci : i ∈ F};
6 S ← S ∪ {i∗};
7 f (S)← f (S) + ci∗ ;
8 F ← {i ∈ F \ {i∗} : S ∪ {i} is not infeasible};
9 end-while;
10 return S , f (S);
end GREEDY.



Solution construction – Greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 4 / 18

The pseudo-code shows a greedy
algorithm for a minimization problem.

Feasible solution S is constructed, one
ground set element at a time.

F is set of feasible ground set elements.

Greedy algorithm selects feasible ground
set element of smallest cost.

Note that costs can be sorted in a
preprocessing step.

Example: Greedy algorithm for minimum
weight spanning tree (Kruskal, 1957).

begin GREEDY;
1 S ← ∅;
2 f (S)← 0;
3 F ← {i ∈ E : S ∪ {i} is not infeasible};
4 while F 6= ∅ do

5 i∗ ← argmin{ci : i ∈ F};
6 S ← S ∪ {i∗};
7 f (S)← f (S) + ci∗ ;
8 F ← {i ∈ F \ {i∗} : S ∪ {i} is not infeasible};
9 end-while;
10 return S , f (S);
end GREEDY.



Solution construction – Adaptive greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 5 / 18

The greedy algorithm in the previous slide selects an element i∗ of the set of feasible candidate
elements F as i∗ ← argmin{ci : i ∈ F}, where ci is the cost associated with the inclusion of
element i ∈ F in the solution.

In that algorithm, only this constant cost is used to guide the algorithm, and therefore the elements
can be sorted in the increasing order of their costs in a preprocessing step.



Solution construction – Adaptive greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 5 / 18

The greedy algorithm in the previous slide selects an element i∗ of the set of feasible candidate
elements F as i∗ ← argmin{ci : i ∈ F}, where ci is the cost associated with the inclusion of
element i ∈ F in the solution.

In that algorithm, only this constant cost is used to guide the algorithm, and therefore the elements
can be sorted in the increasing order of their costs in a preprocessing step.

Although that greedy algorithm is applicable in many situations, such as to the minimum spanning
tree problem, there are other situations where a different measure of the contribution of an element
guides the algorithm and it is affected by the previous choices of elements made by the algorithm.

We call these adaptive greedy algorithms.



Solution construction – Adaptive greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 6 / 18

The pseudo-code shows a generic
adaptive greedy algorithm for a
minimization problem.

begin ADAPTIVE-GREEDY;
1 S ← ∅;
2 f (S)← 0;
3 F ← {i ∈ E : S ∪ {i} is not infeasible};
4 Compute the greedy choice function g(i) for all i ∈ F ;
5 while F 6= ∅ do

6 i∗ ← argmin{g(i) : i ∈ F};
7 S ← S ∪ {i∗};
8 f (S)← f (S) + ci∗ ;
9 F ← {i ∈ F \ {i∗} : S ∪ {i} is not infeasible};
10 Update the greedy choice function g(i) for all i ∈ F ;
11 end-while;
12 return S , f (S);
end ADAPTIVE-GREEDY.



Solution construction – Adaptive greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 6 / 18

The pseudo-code shows a generic
adaptive greedy algorithm for a
minimization problem.

Feasible solution S is constructed, one
ground set element at a time.

F is set of feasible ground set elements.

Greedy choice function g(i) is the
“contribution” of ground set element
i ∈ F .

Adaptive greedy algorithm selects feasible
ground set element of smallest greedy
choice function.

begin ADAPTIVE-GREEDY;
1 S ← ∅;
2 f (S)← 0;
3 F ← {i ∈ E : S ∪ {i} is not infeasible};
4 Compute the greedy choice function g(i) for all i ∈ F ;
5 while F 6= ∅ do

6 i∗ ← argmin{g(i) : i ∈ F};
7 S ← S ∪ {i∗};
8 f (S)← f (S) + ci∗ ;
9 F ← {i ∈ F \ {i∗} : S ∪ {i} is not infeasible};
10 Update the greedy choice function g(i) for all i ∈ F ;
11 end-while;
12 return S , f (S);
end ADAPTIVE-GREEDY.



Solution construction – Adaptive greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 6 / 18

The pseudo-code shows a generic
adaptive greedy algorithm for a
minimization problem.

Feasible solution S is constructed, one
ground set element at a time.

F is set of feasible ground set elements.

Greedy choice function g(i) is the
“contribution” of ground set element
i ∈ F .

Adaptive greedy algorithm selects feasible
ground set element of smallest greedy
choice function.

Example: Adaptive greedy algorithm for
set covering (Johnson, 1974).

begin ADAPTIVE-GREEDY;
1 S ← ∅;
2 f (S)← 0;
3 F ← {i ∈ E : S ∪ {i} is not infeasible};
4 Compute the greedy choice function g(i) for all i ∈ F ;
5 while F 6= ∅ do

6 i∗ ← argmin{g(i) : i ∈ F};
7 S ← S ∪ {i∗};
8 f (S)← f (S) + ci∗ ;
9 F ← {i ∈ F \ {i∗} : S ∪ {i} is not infeasible};
10 Update the greedy choice function g(i) for all i ∈ F ;
11 end-while;
12 return S , f (S);
end ADAPTIVE-GREEDY.



TSP – Adaptive greedy algorithm

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 7 / 18

The algorithm on the right is a nearest neighbor
adaptive greedy algorithm for the TSP.

begin ADAPTIVE-GREEDY-TSP;
1 S ← ∅;
2 f (S)← 0;
3 Let i be any node in V and set i0 ← i ;
4 F ← V \ {i0};
5 while F 6= ∅ do

6 H ← {j ∈ F : (i , j) ∈ U};
7 g(j)← dij for all j ∈ H;
8 j ′ ← argmin{g(j) : j ∈ H};
9 S ← S ∪ {(i , j ′)};
10 f (S)← f (S) + di,j′ ;
11 F ← F \ {j ′};
12 i ← j ′;
13 end-while;
14 S ← S ∪ {(i , i0)};
15 f (S)← f (S) + di,i0 ;
16 return S , f (S);
end ADAPTIVE-GREEDY-TSP.



TSP – Adaptive greedy algorithm

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 7 / 18

The algorithm on the right is a nearest neighbor
adaptive greedy algorithm for the TSP.

Given a graph G = (V ,U), where V is the set of
nodes and U is the set of weighted edges, let dij
be the length (or weight) of edge (i , j) ∈ U.

An adaptive greedy approach for this problem is
to grow the set of visited nodes of the tour,
starting from any initial node i0.

Denote by v the last visited node of the partial
tour under construction. At each step we use the
greedy choice function to select a nearest
unvisited node adjacent to v . This node is added
to the tour.

This is repeated until the tour visits all nodes.

begin ADAPTIVE-GREEDY-TSP;
1 S ← ∅;
2 f (S)← 0;
3 Let i be any node in V and set i0 ← i ;
4 F ← V \ {i0};
5 while F 6= ∅ do

6 H ← {j ∈ F : (i , j) ∈ U};
7 g(j)← dij for all j ∈ H;
8 j ′ ← argmin{g(j) : j ∈ H};
9 S ← S ∪ {(i , j ′)};
10 f (S)← f (S) + di,j′ ;
11 F ← F \ {j ′};
12 i ← j ′;
13 end-while;
14 S ← S ∪ {(i , i0)};
15 f (S)← f (S) + di,i0 ;
16 return S , f (S);
end ADAPTIVE-GREEDY-TSP.



Solution construction – Semi-greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 8 / 18

Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.



Solution construction – Semi-greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 8 / 18

Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.

The algorithm starts from any node and repeatedly
moves from the current node to its nearest
unvisited node.



Solution construction – Semi-greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 8 / 18

Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.

The algorithm starts from any node and repeatedly
moves from the current node to its nearest
unvisited node.

Suppose the algorithm were to start from node 1,
in which case it should move next to either node 2
or 3.



Solution construction – Semi-greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 8 / 18

Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.

The algorithm starts from any node and repeatedly
moves from the current node to its nearest
unvisited node.

Suppose the algorithm were to start from node 1,
in which case it should move next to either node 2
or 3.

If it moves to node 2, then it must necessarily
move next to node 3 and then to node 4. Since
there is no edge connecting node 4 to node 1, the
algorithm will fail to find a tour.



Solution construction – Semi-greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 9 / 18

Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.

By symmetry, the same situation occurs if it were
to start from node 4.



Solution construction – Semi-greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 9 / 18

Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.

By symmetry, the same situation occurs if it were
to start from node 4.

Now suppose the algorithm starts from node 2.
Node 3 is the nearest to node 2 and from node 3
it can move either to node 1 or node 4, failing in

either case to find a tour.

Again, by symmetry, the same situation occurs if
one were to start from node 3.



Solution construction – Semi-greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 9 / 18

Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.

By symmetry, the same situation occurs if it were
to start from node 4.

Now suppose the algorithm starts from node 2.
Node 3 is the nearest to node 2 and from node 3
it can move either to node 1 or node 4, failing in

either case to find a tour.

Again, by symmetry, the same situation occurs if
one were to start from node 3.

Therefore, this adaptive greedy algorithm fails to

find a tour, no matter which node it starts from.



Solution construction – Semi-greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 10 / 18

Consider the following randomized version of the same
adaptive greedy algorithm: Start from any node and re-
peatedly move, with equal probability, to one of its two
nearest unvisited nodes.

Starting from node 1, it then moves to either node
2 or node 3 with equal probability.



Solution construction – Semi-greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 10 / 18

Consider the following randomized version of the same
adaptive greedy algorithm: Start from any node and re-
peatedly move, with equal probability, to one of its two
nearest unvisited nodes.

Starting from node 1, it then moves to either node
2 or node 3 with equal probability.

Suppose it were to move to node 2. Now, again
with equal probability, it moves to either node 3 or
node 4.

◮ On the one hand, if it were to move to node 3, it
would fail to find a tour.

◮ On the other hand, by moving to node 4, it
would then go to node 3, and then back to node
1, thus finding a tour of length 40.



Solution construction – Semi-greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 10 / 18

Consider the following randomized version of the same
adaptive greedy algorithm: Start from any node and re-
peatedly move, with equal probability, to one of its two
nearest unvisited nodes.

Starting from node 1, it then moves to either node
2 or node 3 with equal probability.

Suppose it were to move to node 2. Now, again
with equal probability, it moves to either node 3 or
node 4.

◮ On the one hand, if it were to move to node 3, it
would fail to find a tour.

◮ On the other hand, by moving to node 4, it
would then go to node 3, and then back to node
1, thus finding a tour of length 40.

Therefore, there is a 50% probability that the
algorithm will find a tour if it starts from node 1.



Solution construction – Semi-greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 10 / 18

After ten attempts, the probability of finding the
optimal solution is over 99.9%.

Consider the following randomized version of the same
adaptive greedy algorithm: Start from any node and re-
peatedly move, with equal probability, to one of its two
nearest unvisited nodes.

Starting from node 1, it then moves to either node
2 or node 3 with equal probability.

Suppose it were to move to node 2. Now, again
with equal probability, it moves to either node 3 or
node 4.

◮ On the one hand, if it were to move to node 3, it
would fail to find a tour.

◮ On the other hand, by moving to node 4, it
would then go to node 3, and then back to node
1, thus finding a tour of length 40.

Therefore, there is a 50% probability that the
algorithm will find a tour if it starts from node 1.

With repeated applications, the probability of
finding the optimal cycle quickly approaches one.



Semi-greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 11 / 18

Algorithms like the one in the previous slide, which add randomization to a greedy or adaptive greedy
algorithm, are called semi-greedy or randomized-greedy algorithms.

The pseudo-code on the right shows a
semi-greedy algorithm for a minimization
problem.

begin SEMI-GREEDY;
1 S ← ∅;
2 f (S)← 0;
3 F ← {i ∈ E : S ∪ {i} is not infeasible};
4 while F 6= ∅ do

5 Let RCL be a subset of low-cost elements of F ;
6 Let i∗ be a randomly chosen element from RCL;
7 S ← S ∪ {i∗};
8 f (S)← f (S) + ci∗ ;
9 F ← {i ∈ F \ {i∗} : S ∪ {i} is not infeasible};
10 end-while;
11 return S , f (S);
end SEMI-GREEDY.



Semi-greedy algorithms

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 11 / 18

Algorithms like the one in the previous slide, which add randomization to a greedy or adaptive greedy
algorithm, are called semi-greedy or randomized-greedy algorithms.

The pseudo-code on the right shows a
semi-greedy algorithm for a minimization
problem.

It is similar to a greedy algorithm, differing
only in how the ground set element is
chosen from the set F of feasible candidate
ground set elements (lines 5 and 6).

In line 5, a subset of low-cost elements of
set F is placed in a restricted candidate list
(RCL).

In line 6, a ground set element is selected
at random from the RCL to be
incorporated into the solution in line 7.

begin SEMI-GREEDY;
1 S ← ∅;
2 f (S)← 0;
3 F ← {i ∈ E : S ∪ {i} is not infeasible};
4 while F 6= ∅ do

5 Let RCL be a subset of low-cost elements of F ;
6 Let i∗ be a randomly chosen element from RCL;
7 S ← S ∪ {i∗};
8 f (S)← f (S) + ci∗ ;
9 F ← {i ∈ F \ {i∗} : S ∪ {i} is not infeasible};
10 end-while;
11 return S , f (S);
end SEMI-GREEDY.



Semi-greedy algorithms: Building the RCL

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 12 / 18

Two simple schemes to define a restricted candidate list are:

Cardinality-based RCL: The k least-costly feasible candidate ground set elements of set F are placed
in the RCL.



Semi-greedy algorithms: Building the RCL

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 12 / 18

Two simple schemes to define a restricted candidate list are:

Cardinality-based RCL: The k least-costly feasible candidate ground set elements of set F are placed
in the RCL.

Quality-based RCL: RCL is formed by all ground-set elements i ∈ F satisfying

cmin ≤ ci ≤ cmin + α(cmax − cmin),

where
cmin = min{ci : i ∈ F}, cmax = max{ci : i ∈ F}, and 0 ≤ α ≤ 1.

Note that setting

◮ α = 0 corresponds to a pure greedy algorithm, since a lowest cost element will always be selected.
◮ α = 1 leads to a random algorithm, since any new element may be added with equal probability.



Random multi-start

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 13 / 18

A multistart procedure is an algorithm which repeatedly applies a solution construction procedure and
outputs the best solution found over all trials. Each trial, or iteration, of a multistart procedure is applied
under different conditions.

The pseudo-code on the right is of a random
multistart procedure for a minimization problem.

begin RANDOM-MULTISTART;
1 f ∗ ←∞;
2 while stopping criterion not satisfied do

3 S ← RandomSolution;
4 if f (S) < f ∗ then

5 S∗ ← S ;
6 f ∗ ← f (S);
7 end-if;
8 end-while;
9 return S∗;
end RANDOM-MULTISTART.



Random multi-start

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 13 / 18

A multistart procedure is an algorithm which repeatedly applies a solution construction procedure and
outputs the best solution found over all trials. Each trial, or iteration, of a multistart procedure is applied
under different conditions.

The pseudo-code on the right is of a random
multistart procedure for a minimization problem.

Like the GREEDY algorithm, a new random
solution is generated in line 3 by adding to the
partial solution (initially empty) a new feasible
ground set element, one element at a time.

Unlike GREEDY, each ground set element is
chosen at random from the set of candidate
ground set elements.

begin RANDOM-MULTISTART;
1 f ∗ ←∞;
2 while stopping criterion not satisfied do

3 S ← RandomSolution;
4 if f (S) < f ∗ then

5 S∗ ← S ;
6 f ∗ ← f (S);
7 end-if;
8 end-while;
9 return S∗;
end RANDOM-MULTISTART.



Semi-greedy multi-start

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 14 / 18

The semi-greedy algorithm can be embedded in a multistart framework.

The pseudo-code on the right is of a semi-greedy
multistart procedure for a minimization problem.

begin SEMI-GREEDY-MULTISTART;
1 f ∗ ←∞;
2 while stopping criterion not satisfied do

3 S ← SEMI-GREEDY;
4 if f (S) < f ∗ then

5 S∗ ← S ;
6 f ∗ ← f (S);
7 end-if;
8 end-while;
9 return S∗;
end SEMI-GREEDY-MULTISTART.



Semi-greedy multi-start

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 14 / 18

The semi-greedy algorithm can be embedded in a multistart framework.

The pseudo-code on the right is of a semi-greedy
multistart procedure for a minimization problem.

This algorithm is almost identical to the random
multistart method, except that solutions are
generated with a semi-greedy procedure instead
of at random.

Note that each invocation of the semi-greedy
procedure in line 3 is independent of the others,
therefore producing independent solutions.

begin SEMI-GREEDY-MULTISTART;
1 f ∗ ←∞;
2 while stopping criterion not satisfied do

3 S ← SEMI-GREEDY;
4 if f (S) < f ∗ then

5 S∗ ← S ;
6 f ∗ ← f (S);
7 end-if;
8 end-while;
9 return S∗;
end SEMI-GREEDY-MULTISTART.



Semi-greedy multistart

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 15 / 18

1

10

100

1000

5000

2 3 4 5 6 7 8 9 10 11

O
cc

ur
re

nc
es

 o
ve

r 
50

00
 tr

ia
ls

Solution value

be
st

 k
no

w
n 

so
lu

tio
n 

va
lu

e

greedy

semi-greedy

random

Recall that parameter α in a semi-greedy construction
procedure controls the mix of greediness and randomness
in the constructed solution.

In the case of a maximization problem:

◮ α = 1 leads to a greedy construction.
◮ α = 0 leads to a random construction.



Semi-greedy multistart

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 15 / 18

1

10

100

1000

5000

2 3 4 5 6 7 8 9 10 11

O
cc

ur
re

nc
es

 o
ve

r 
50

00
 tr

ia
ls

Solution value

be
st

 k
no

w
n 

so
lu

tio
n 

va
lu

e

greedy

semi-greedy

random

Recall that parameter α in a semi-greedy construction
procedure controls the mix of greediness and randomness
in the constructed solution.

In the case of a maximization problem:

◮ α = 1 leads to a greedy construction.
◮ α = 0 leads to a random construction.

The figure shows the distribution of solution values
on an instance of the maximum covering problem
produced by

◮ a random multistart procedure,
◮ a semi-greedy multistart algorithm with the RCL

parameter α = 0.85,
◮ a greedy algorithm,
◮ along with the best known solution value.



Semi-greedy multistart

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 16 / 18

1

10

100

1000

5000

2 3 4 5 6 7 8 9 10 11

O
cc

ur
re

nc
es

 o
ve

r 
50

00
 tr

ia
ls

Solution value

be
st

 k
no

w
n 

so
lu

tio
n 

va
lu

e

greedy

semi-greedy

random

The figure compares the two distributions with the greedy
solution value and the best-known solution value for
this maximization problem. It illustrates four important
points:



Semi-greedy multistart

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 16 / 18

1

10

100

1000

5000

2 3 4 5 6 7 8 9 10 11

O
cc

ur
re

nc
es

 o
ve

r 
50

00
 tr

ia
ls

Solution value

be
st

 k
no

w
n 

so
lu

tio
n 

va
lu

e

greedy

semi-greedy

random

The figure compares the two distributions with the greedy
solution value and the best-known solution value for
this maximization problem. It illustrates four important
points:

1 Semi-greedy solutions are on average much better
than random solutions.

2 There is more variance in the solution values
produced by a random multistart method than by
a semi-greedy multistart algorithm.

3 The greedy solution is on average better than both
the random and the semi-greedy solutions but,
even if ties are broken at random, it has less
variance than the random or semi-greedy solutions.

4 Random, semi-greedy, and greedy solutions are
usually sub-optimal.



Semi-greedy algorithm

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 17 / 18

Distribution of semi-greedy solution values as a
function of the quality-based RCL parameter α
(1000 repetitions were recorded for each value
of α) on an instance of the maximum weighted
satisfiability problem.

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

α = 0 (random) α = 0.2

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

α = 0.4 α = 0.6

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

200

400

600

800

1000

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

α = 0.8 α = 1 (greedy)



Semi-greedy algorithm

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 17 / 18

Distribution of semi-greedy solution values as a
function of the quality-based RCL parameter α
(1000 repetitions were recorded for each value
of α) on an instance of the maximum weighted
satisfiability problem.

As α increases from 0 (random
construction) to 1 (greedy construction):

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

α = 0 (random) α = 0.2

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

α = 0.4 α = 0.6

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

200

400

600

800

1000

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

α = 0.8 α = 1 (greedy)



Semi-greedy algorithm

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 17 / 18

Distribution of semi-greedy solution values as a
function of the quality-based RCL parameter α
(1000 repetitions were recorded for each value
of α) on an instance of the maximum weighted
satisfiability problem.

As α increases from 0 (random
construction) to 1 (greedy construction):

◮ Average solution value increases.

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

α = 0 (random) α = 0.2

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

α = 0.4 α = 0.6

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

200

400

600

800

1000

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

α = 0.8 α = 1 (greedy)



Semi-greedy algorithm

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 17 / 18

Distribution of semi-greedy solution values as a
function of the quality-based RCL parameter α
(1000 repetitions were recorded for each value
of α) on an instance of the maximum weighted
satisfiability problem.

As α increases from 0 (random
construction) to 1 (greedy construction):

◮ Average solution value increases.
◮ Spread of solution values decreases.

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

α = 0 (random) α = 0.2

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

α = 0.4 α = 0.6

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

0

200

400

600

800

1000

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

α = 0.8 α = 1 (greedy)



Concluding remarks

University of Vienna Constructive heuristics Metaheuristics – 2017-10-18 18 / 18

The material in this talk is taken from

Chapter 3 – Solution construction and greedy
algorithms

of our book, Optimization by GRASP: Greedy Ran-

domized Adaptive Search Procedures (Resende &
Ribeiro, Springer, 2016).


