Constructive heuristics

Celso C. Ribeiro (celso@ic.uff.br)
University of Vienna

Metaheuristics — 2017-10-18

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18

1/18

Overview of talk

@ Solution construction

Greedy algorithms
Adaptive greedy algorithms
Semi-greedy algorithms
Random multistart
Semi-greedy multistart
Semi-greedy construction

vyvyVvYyVvYVvYy

@ Concluding remarks

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 2/18

Solution construction — Greedy algorithms

@ Feasible solution S of a combinatorial optimization problem is subset of ground set E = {1,...,n}.

@ Since certain subsets of ground set elements cause infeasibilities, then a feasible solution cannot
contain any such subset.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 3/18

Solution construction — Greedy algorithms

@ Feasible solution S of a combinatorial optimization problem is subset of ground set E = {1,...,n}.

@ Since certain subsets of ground set elements cause infeasibilities, then a feasible solution cannot
contain any such subset.

@ If ¢; is the contribution of ground set element i € E to the objective function, we assume that
f(S) =2iesci-
@ We build a solution incrementally from scratch.

> At each step, a single ground set element is added to the partial solution under construction.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 3/18

Solution construction — Greedy algorithms

@ Feasible solution S of a combinatorial optimization problem is subset of ground set E = {1,...,n}.

@ Since certain subsets of ground set elements cause infeasibilities, then a feasible solution cannot
contain any such subset.

@ If ¢; is the contribution of ground set element i € E to the objective function, we assume that
f(S) = ZIES Gi-
@ We build a solution incrementally from scratch.
> At each step, a single ground set element is added to the partial solution under construction.
> A ground set element to be added at each step cannot be such that its combination with one or more

previously added elements leads to an infeasibility.
> We call such an element feasible and denote by F the set of all feasible elements at the time a given

step is performed.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 3/18

Solution construction — Greedy algorithms

@ Feasible solution S of a combinatorial optimization problem is subset of ground set E = {1,...,n}.

@ Since certain subsets of ground set elements cause infeasibilities, then a feasible solution cannot
contain any such subset.

@ If ¢; is the contribution of ground set element i € E to the objective function, we assume that
f(S) =iesci-

@ We build a solution incrementally from scratch.

> At each step, a single ground set element is added to the partial solution under construction.

> We call such an element feasible and denote by F the set of all feasible elements at the time a given
step is performed.

Since the set of candidate elements F may contain more than one element, an algorithm designed to
build a feasible solution for some problem must have a mechanism to select the next feasible ground
set element from F to be added to the partially built solution under construction.

» From among all yet unselected feasible elements, a greedy algorithm chooses one of least cost.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 3/18

Solution construction — Greedy algorithms

@ The pseudo-code shows a greedy
algorithm for a minimization problem.

University of Vienna

begin GREEDY;
1 S« g;
2 f(5)«0;
3 F<+{i€E : Su{i}is not infeasible};
4 while F # @ do
5 i* < argmin{c; : i€ F};
6 S+ Su{i*}
7 f(S) < f(S) + ci;
8 F <« {ie F\{i*} : SU{i} is not infeasible};
9 end-while;
10 return S, (S);
end GREEDY.
Constructive heuristics Metaheuristics — 2017-10-18

4/18

Solution construction — Greedy algorithms

¢

The pseudo-code shows a greedy
algorithm for a minimization problem.

Feasible solution S is constructed, one
ground set element at a time.

F is set of feasible ground set elements.

Greedy algorithm selects feasible ground
set element of smallest cost.

Note that costs can be sorted in a
preprocessing step.

University of Vienna

begin GREEDY;
1 S« g;
2 f(5)«0;
3 F+{i€E : Su{i}is not infeasible};
4 while F # @ do
5 i* < argmin{c; : i€ F};
6 S+ Su{i*}
7 f(S) < f(S) + ci=;
8 F <« {ie F\{i*} : SU{i} is not infeasible};
9 end-while;
10 return S, (S);
end GREEDY.
Constructive heuristics Metaheuristics — 2017-10-18

4/18

Solution construction — Greedy algorithms

@ The pseudo-code shows a greedy begin GREEDY;
algorithm for a minimization problem. 1 S o Y
@ Feasible solution S is constructed, one 2 f(S)«0;
ground set element at a time. 3 F+{i€E : Su{i}is not infeasible};
@ F is set of feasible ground set elements. 4 Wh'!*e FFo _do .
5 i* < argmin{c; : i€ F};
@ Greedy algorithm selects feasible ground | g S« Su{i*h
set element of smallest cost. 7 £(S) < F(S) + civ;
@ Note that costs can be sorted in a 8 F{ie F\{i"} : SuU{i} is not infeasible};
preprocessing step. 9 end-while;
@ Example: Greedy algorithm for minimum lodrth;?Eg’Yf(S);
weight spanning tree (Kruskal, 1957). en)

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 4/18

Solution construction — Adaptive greedy algorithms

@ The greedy algorithm in the previous slide selects an element i* of the set of feasible candidate
elements F as i* < argmin{c; : i € F}, where ¢; is the cost associated with the inclusion of
element i € F in the solution.

@ In that algorithm, only this constant cost is used to guide the algorithm, and therefore the elements
can be sorted in the increasing order of their costs in a preprocessing step.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 5/18

Solution construction — Adaptive greedy algorithms

@ The greedy algorithm in the previous slide selects an element i* of the set of feasible candidate
elements F as i* < argmin{c; : i € F}, where ¢; is the cost associated with the inclusion of
element i € F in the solution.

@ In that algorithm, only this constant cost is used to guide the algorithm, and therefore the elements
can be sorted in the increasing order of their costs in a preprocessing step.

@ Although that greedy algorithm is applicable in many situations, such as to the minimum spanning
tree problem, there are other situations where a different measure of the contribution of an element
guides the algorithm and it is affected by the previous choices of elements made by the algorithm.

@ We call these adaptive greedy algorithms.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 5/18

Solution construction — Adaptive greedy algorithms

@ The pseudo-code shows a generic begin ADAPTIVE-GREEDY:
adaptive greedy algorithm for a S o '

minimization problem. £(S) « O;

F <« {ie E : SU{i} is not infeasible};
Compute the greedy choice function g(i) for all i € F;
while F # & do
i* < argmin{g(i) : i € F}
S+« Su{i"}
f(S) « f(S) + ci*;
F <« {ie F\{i*} : SU{i} is not infeasible};
10 Update the greedy choice function g(i) for all i € F;
11 end-while;
12 return S, f(S);
end ADAPTIVE-GREEDY.

O~NO O W

©

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 6 /18

Solution construction — Adaptive greedy algorithms

@ The pseudo—code ShOYVS a generic begin ADAPTIVE-GREEDY;
adaptive greedy algorithm for a 1 S o
minimization problem. 2 £(S)«0;
@ Feasible solution S is constructed, one 3 F+{i€E : Su{i}is not infeasible};
ground set element at a time. 4 Compute the greedy choice function g(i) for all i € F;
@ F is set of feasible ground set elements. 5 Wh'!f F#o _do . .
6 i* < argmin{g(i) : i € F}
@ Greedy choice function g(i) is the 7 S« SuU{i*h;
“contribution” of ground set element 8 £(S) « F(S) + civ;
ierf. 9 F <« {ie F\{i*} : SU{i} is not infeasible};
@ Adaptive greedy algorithm selects feasible | 10~ Update the greedy choice function g(i) for all i € F;
ground set element of smallest greedy 11 end-while;
choice function. 12 return S, f(S);

end ADAPTIVE-GREEDY.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 6 /18

Solution construction — Adaptive greedy algorithms

@ The pseudo—code ShOYVS a generic begin ADAPTIVE-GREEDY;
adaptive greedy algorithm for a 1 S o
minimization problem. 2 £(S)«0;
@ Feasible solution S is constructed, one 3 F+{i€E : Su{i}is not infeasible};
ground set element at a time. 4 Compute the greedy choice function g(i) for all i € F;
@ F is set of feasible ground set elements. 5 Wh'!f FF#o _do . .
6 i* < argmin{g(i) : i € F}
@ Greedy choice function g(i) is the 7 S« SuU{i*h;
“contribution” of ground set element 8 £(S) « F(S) + civ;
ierf. 9 F <« {ie F\{i*} : SU{i} is not infeasible};
@ Adaptive greedy algorithm selects feasible | 10~ Update the greedy choice function g(i) for all i € F;
ground set element of smallest greedy 11 end-while;
choice function. 12 return S, f(S);

@ Example: Adaptive greedy algorithm for end ADAPTIVE-GREEDY.

set covering (Johnson, 1974).

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 6 /18

TSP — Adaptive greedy algorithm

@ The algorithm on the right is a nearest neighbor begin ADAPTIVE-GREEDY-TSP;
adaptive greedy algorithm for the TSP. S o

f(S) « 0;

Let / be any node in V and set iy < i;

F+— V\{ih

while F # @ do
H+—{jeF : (i,j)e U}
g(j) < dj for all j € H;
J < argmin{g(j) : jE€H};
S« SU{(i,j)}

10 f(5)<— f(s)“rd,"j/;

11 F+F\{'}

12 i« j

13 end-while;

14 S+ Su{(i, i)}

15 £(S) « f(S) + di,iy;

16 return S, (S);

end ADAPTIVE-GREEDY-TSP.

O~NO O W

©

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 7/18

TSP — Adaptive greedy algorithm

®

The algorithm on the right is a nearest neighbor
adaptive greedy algorithm for the TSP.

Given a graph G = (V, U), where V is the set of
nodes and U is the set of weighted edges, let dj
be the length (or weight) of edge (i,)) € U.

An adaptive greedy approach for this problem is
to grow the set of visited nodes of the tour,
starting from any initial node /.

Denote by v the last visited node of the partial
tour under construction. At each step we use the
greedy choice function to select a nearest
unvisited node adjacent to v. This node is added
to the tour.

This is repeated until the tour visits all nodes.

begin ADAPTIVE-GREEDY-TSP;

S+ @;

f(S) « 0;

Let / be any node in V and set iy < i;

F <+ V\{ih

while 7 # @ do
H+—{jeF : (i,j)e U}
g(j) « dj for all j € H;
J < argmin{g(j) : j€H};
S« SU{(i,j)}h

10 f(S)(— f(s)“rd,"j/;

11 F+F\{'}

12 i+

13 end-while;

14 S+ SuU{(i, i)}

15 £(S) « f(S) + di,iy;

16 return S, (S);

end ADAPTIVE-GREEDY-TSP.

O~NO O W

©

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18

7/18

Solution construction — Semi-greedy algorithms

Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 8 /18

Solution construction — Semi-greedy algorithms

Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.

@ The algorithm starts from any node and repeatedly
moves from the current node to its nearest
unvisited node.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 8 /18

Solution construction — Semi-greedy algorithms

Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.

@ The algorithm starts from any node and repeatedly
moves from the current node to its nearest
unvisited node.

@ Suppose the algorithm were to start from node 1,
in which case it should move next to either node 2
or 3.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 8 /18

Solution construction — Semi-greedy algorithms

Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.

@ The algorithm starts from any node and repeatedly
moves from the current node to its nearest
unvisited node.

@ Suppose the algorithm were to start from node 1,
in which case it should move next to either node 2
or 3.

@ If it moves to node 2, then it must necessarily
move next to node 3 and then to node 4. Since
there is no edge connecting node 4 to node 1, the
algorithm will fail to find a tour.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 8 /18

Solution construction — Semi-greedy algorithms

Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.

@ By symmetry, the same situation occurs if it were
to start from node 4.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 9/18

Solution construction — Semi-greedy algorithms

Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.

@ By symmetry, the same situation occurs if it were
to start from node 4.

@ Now suppose the algorithm starts from node 2.
Node 3 is the nearest to node 2 and from node 3
it can move either to node 1 or node 4, failing in
either case to find a tour.

@ Again, by symmetry, the same situation occurs if
one were to start from node 3.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 9/18

Solution construction — Semi-greedy algorithms

Suppose we wish to find a shortest Hamiltonian cycle in
this graph applying the nearest neighbor adaptive greedy
algorithm.

@ By symmetry, the same situation occurs if it were
to start from node 4.

@ Now suppose the algorithm starts from node 2.
Node 3 is the nearest to node 2 and from node 3
it can move either to node 1 or node 4, failing in
either case to find a tour.

@ Again, by symmetry, the same situation occurs if
one were to start from node 3.

@ Therefore, this adaptive greedy algorithm fails to
find a tour, no matter which node it starts from.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 9/18

Solution construction — Semi-greedy algorithms

Consider the following randomized version of the same
adaptive greedy algorithm: Start from any node and re-
peatedly move, with equal probability, to one of its two
nearest unvisited nodes.

@ Starting from node 1, it then moves to either node
2 or node 3 with equal probability.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 10 / 18

Solution construction — Semi-greedy algorithms

Consider the following randomized version of the same
adaptive greedy algorithm: Start from any node and re-
peatedly move, with equal probability, to one of its two
nearest unvisited nodes.

@ Starting from node 1, it then moves to either node
2 or node 3 with equal probability.

@ Suppose it were to move to node 2. Now, again
with equal probability, it moves to either node 3 or
node 4.

» On the one hand, if it were to move to node 3, it
would fail to find a tour.

> On the other hand, by moving to node 4, it
would then go to node 3, and then back to node
1, thus finding a tour of length 40.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 10 / 18

Solution construction — Semi-greedy algorithms

Consider the following randomized version of the same
adaptive greedy algorithm: Start from any node and re-
peatedly move, with equal probability, to one of its two
nearest unvisited nodes.

@ Starting from node 1, it then moves to either node
2 or node 3 with equal probability.

@ Suppose it were to move to node 2. Now, again
with equal probability, it moves to either node 3 or
node 4.

» On the one hand, if it were to move to node 3, it
would fail to find a tour.

> On the other hand, by moving to node 4, it
would then go to node 3, and then back to node
1, thus finding a tour of length 40.

@ Therefore, there is a 50% probability that the
algorithm will find a tour if it starts from node 1.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 10 / 18

Solution construction — Semi-greedy algorithms

Consider the following randomized version of the same
adaptive greedy algorithm: Start from any node and re-
peatedly move, with equal probability, to one of its two
nearest unvisited nodes.

@ Starting from node 1, it then moves to either node
2 or node 3 with equal probability.

@ Suppose it were to move to node 2. Now, again
with equal probability, it moves to either node 3 or
node 4.

» On the one hand, if it were to move to node 3, it
would fail to find a tour.

> On the other hand, by moving to node 4, it
would then go to node 3, and then back to node
1, thus finding a tour of length 40.

After ten attempts, the probability of finding the
optimal solution is over 99.9%.

@ Therefore, there is a 50% probability that the
algorithm will find a tour if it starts from node 1.

@ With repeated applications, the probability of
finding the optimal cycle quickly approaches one.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 10 / 18

Semi-greedy algorithms

Algorithms like the one in the previous slide, which add randomization to a greedy or adaptive greedy
algorithm, are called semi-greedy or randomized-greedy algorithms.

@ The pseudo-code on the right shows a begin SEMI-GREEDY;

semi-greedy algorithm for a minimization 1 S« o

problem. 2 £(S)+0;
3 F <« {i€E : SuU{i}is not infeasible};
4 while F # @ do
5 Let RCL be a subset of low-cost elements of F;
6 Let i* be a randomly chosen element from RCL;
7 S« Su{irh
8 f(S) < f(S) + ci=;
9 F«{ie F\{i"} : SU{i} is not infeasible};
10 end-while;
11 return S, 7(S);
end SEMI-GREEDY.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 11 /18

Semi-greedy algorithms

Algorithms like the one in the previous slide, which add randomization to a greedy or adaptive greedy
algorithm, are called semi-greedy or randomized-greedy algorithms.

@ The pseudo-code on the right shows a begin SEMI-GREEDY;
semi-greedy algorithm for a minimization 1 S« o
problem. 2 £(S) «0;
@ It is similar to a greedy algorithm, differing | 3 F < {i € E : SU{i} is not infeasible};
only in how the ground set element is 4 while F # @ do
chosen from the set F of feasible candidate | 5 Let RCL be a subset of low-cost elements of F;
ground set elements (lines 5 and 6). 6 Let i* be a randomly chosen element from RCL;
@ In line 5, a subset of low-cost elements of 7 S« Suli"h
set F is placed in a restricted candidate list 8 f(S) < F(S)+ C;* . . .
(RCL). 9 F « {ie F\{i"} : SU{i} is not infeasible};
10 end-while;
@ In line 6, a ground set element is selected 11 return S, £(S);
at random from the RCL to be end SEMI-GREEDY.
incorporated into the solution in line 7.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 11 /18

Semi-greedy algorithms: Building the RCL

Two simple schemes to define a restricted candidate list are:

@ Cardinality-based RCL: The k least-costly feasible candidate ground set elements of set F are placed
in the RCL.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 12 /18

Semi-greedy algorithms: Building the RCL

Two simple schemes to define a restricted candidate list are:

@ Cardinality-based RCL: The k least-costly feasible candidate ground set elements of set F are placed

in the RCL.
@ Quality-based RCL: RCL is formed by all ground-set elements i € F satisfying

Cmin S Ci S Cmin + Ol(cmax - Cmin),

where
Cmin =min{c; : i €F}, cmax =max{c : i€ F},and 0 < a < 1.
Note that setting

> « = 0 corresponds to a pure greedy algorithm, since a lowest cost element will always be selected.
> « =1 leads to a random algorithm, since any new element may be added with equal probability.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18

12 /18

Random multi-start

A multistart procedure is an algorithm which repeatedly applies a solution construction procedure and
outputs the best solution found over all trials. Each trial, or iteration, of a multistart procedure is applied
under different conditions.

@ The pseudo—code on the right is of a random begin RANDOM-MULT|START;
multistart procedure for a minimization problem. 1 " oo
2 while stopping criterion not satisfied do
3 S < RandomSolution;
4 if £(S) < f* then
5 5"+ S;
6 f* < f(S);
7 end-if;

8 end-while;
9 return S*;
end RANDOM-MULTISTART.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 13 /18

Random multi-start

A multistart procedure is an algorithm which repeatedly applies a solution construction procedure and
outputs the best solution found over all trials. Each trial, or iteration, of a multistart procedure is applied
under different conditions.

@ The pseudo—code on the right is of a random begin RANDOM-MULT|START;
multistart procedure for a minimization problem. 1 " oo
@ Like the GREEDY algorithm, a new random 2 while stopping criterion not satisfied do
solution is generated in line 3 by adding to the 3 S < RandomSolution;
partial solution (initially empty) a new feasible 4 if f(S) < f* then
ground set element, one element at a time. 5 S5« S;
@ Unlike GREEDY, each ground set element is 6 f_ < f(S);
. 7 end-if;
chosen at random from the set of candidate .
8 end-while;
ground set elements. .
9 return S*;
end RANDOM-MULTISTART.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 13 /18

Semi-greedy multi-start

The semi-greedy algorithm can be embedded in a multistart framework.

@ The pseudo-code on the right is of a semi-greedy begin SEMI-GREEDY-MULTISTART;
multistart procedure for a minimization problem. 1 oo

2 while stopping criterion not satisfied do
3 S + SEMI-GREEDY;

4 if £(S) < f* then
5 5« S;

6 F* < £(S);

7 end-if:

8 end-while;
9 return S*;
end SEMI-GREEDY-MULTISTART.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 14 /18

Semi-greedy multi-start

The semi-greedy algorithm can be embedded in a multistart framework.

@ The pseudo-code on the right is of a semi-greedy begin SEMI-GREEDY-MULTISTART;

multistart procedure for a minimization problem. 1 f* « oo
@ This algorithm is almost identical to the random 2 while stopping criterion not satisfied do
multistart method, except that solutions are 3 S <+ SEMI-GREEDY;
generated with a semi-greedy procedure instead 4 if f(S) < f* then
of at random. 5 5"« S;
o . 6 £ £(S);
@ Note that each invocation of the semi-greedy 7 end-if

procedure in line 3 is independent of the others,

therefore producing independent solutions. 8 end-while;

9 return S*;
end SEMI-GREEDY-MULTISTART.

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 14 /18

Semi-greedy multistart

Recall that parameter « in a semi-greedy construction
procedure controls the mix of greediness and randomness
in the constructed solution.

@ In the case of a maximization problem:

» « =1 leads to a greedy construction.
> « = 0 leads to a random construction.

Occurrences over 5000 trials

University of Vienna Constructive heuristics

5000

1000

100

10

random

greedy|

semi-greedy

best known solution value

6 7 8 9
Solution value

Metaheuristics — 2017-10-18

=
o

11

15/ 18

Semi-greedy multistart

Recall that parameter o in a semi-greedy construction

procedure controls the mix of greediness and randomness o
in the constructed solution. 3
3
@ In the case of a maximization problem: g
[%]
» « =1 leads to a greedy construction. s
. [
» « = 0 leads to a random construction. S
3
8
@ The figure shows the distribution of solution values ©
on an instance of the maximum covering problem
produced by
> a random multistart procedure,
» a semi-greedy multistart algorithm with the RCL
parameter oo = 0.85,
> a greedy algorithm,
> along with the best known solution value.
University of Vienna Constructive heuristics

5000

1000

100

10

random

greedy|

semi-greedy

best known solution value

6 7
Solution value

Metaheuristics — 2017-10-18

=
o

11

15/ 18

Semi-greedy multistart

The figure compares the two distributions with the greedy
solution value and the best-known solution value for
this maximization problem. It illustrates four important
points:

University of Vienna

Occurrences over 5000 trials

Constructive heuristics

5000

1000

100

10

greedy| B
[
=1
©
>
semi-greedy} || §
random g
n
c
3
o
<] 4
=
?
[
o
.
4 6 7 8 9 10

Solution value

Metaheuristics — 2017-10-18

11

16 / 18

Semi-greedy multistart

The figure compares the two distributions with the greedy
solution value and the best-known solution value for
this maximization problem. It illustrates four important
points:

Q Semi-greedy solutions are on average much better
than random solutions.

Occurrences over 5000 trials

Q There is more variance in the solution values
produced by a random multistart method than by
a semi-greedy multistart algorithm.

© The greedy solution is on average better than both
the random and the semi-greedy solutions but,
even if ties are broken at random, it has less
variance than the random or semi-greedy solutions.

@ Random, semi-greedy, and greedy solutions are
usually sub-optimal.

University of Vienna Constructive heuristics

5000

1000

100

10

random

greedy|

semi-greedy

6 7 8 9
Solution value

Metaheuristics — 2017-10-18

=

© [best known solution value

11

16 / 18

Semi-greedy algorithm

Distribution of semi-greedy solution values as a
function of the quality-based RCL parameter «
(1000 repetitions were recorded for each value
of &) on an instance of the maximum weighted
satisfiability problem.

a=08

University of Vienna Constructive heuristics

(greedy)

Metaheuristics — 2017-10-18

17 / 18

Semi-greedy algorithm

Distribution of semi-greedy solution values as a
function of the quality-based RCL parameter «
(1000 repetitions were recorded for each value
of &) on an instance of the maximum weighted
satisfiability problem.

@ As « increases from 0 (random
construction) to 1 (greedy construction):

a=08

University of Vienna Constructive heuristics

(greedy)

Metaheuristics — 2017-10-18

17 / 18

Semi-greedy algorithm

Distribution of semi-greedy solution values as a
function of the quality-based RCL parameter «
(1000 repetitions were recorded for each value
of &) on an instance of the maximum weighted
satisfiability problem.

@ As « increases from 0 (random
construction) to 1 (greedy construction):

> Average solution value increases.

a=0 (randoahn()

University of Vienna Constructive heuristics

Metaheuristics — 2017-10-18

17 / 18

Semi-greedy algorithm

|

Distribution of semi-greedy solution values as a i
istributi I-g y solution valu a =0 (random)

function of the quality-based RCL parameter «
(1000 repetitions were recorded for each value
of &) on an instance of the maximum weighted
satisfiability problem.

@ As « increases from 0 (random
construction) to 1 (greedy construction):

> Average solution value increases.
> Spread of solution values decreases.

a“ :1 (greggy‘)

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 17 /18

Concluding remarks

The material in this talk is taken from

@ Chapter 3 — Solution construction and greedy

algorithms
of our book, Optimization by GRASP: Greedy Ran-
domized Adaptive Search Procedures (Resende & Mauricio G.C. Resende
Ribeiro, Springer, 2016). Celso C. Ribeiro

Opt|m|zat|on
by GRASP

Greedy Randomized Adaptive
Search Procedures

@ Springer
4

University of Vienna Constructive heuristics Metaheuristics — 2017-10-18 18 /18

